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a b s t r a c t

A consistent Riccati expansion (CRE) method is developed for a special Kuramoto–
Sivashinsky (KS) equation and we prove the general KS equation is non-CRE
solvable. Furthermore, we obtain the soliton–cnoidal wave interaction solution of
the special KS equation.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

With the development of nonlinear science, nonlinear evolution equations have been used to describe
certain phenomena in the fluid mechanics, plasma physics, optical fibers, and solid state physics [1,2]. Many
effective methods have been proposed to find the exact solutions of the nonlinear systems, such as the
Darboux transformation, the Hirota bilinear form, Painlevé analysis, symmetry group analysis, the variable
separation approach and so on. Recently, the authors proposed a simple effective method in [3], the consistent
Riccati expansion (CRE) method, which is based on the symmetry reductions with nonlocal symmetries. The
CRE method can be used to identify CRE solvable systems and it is a more generalized but much simpler
method to look for new interaction solutions between a soliton and other types of nonlinear excitations [4–7].

We first focus on a special form of the Kuramoto–Sivashinsky (KS) equation

ut + uux + αuxx = 0. (1)
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It is a model partial differential equation frequently encountered in the study of continuous media which
exhibits a chaotic behavior. Eq. (1) describes the fluctuation of the position of a flame front, the motion
of a fluid going down a vertical wall, or a spatially uniform oscillating chemical reaction in a homogeneous
medium. The KS equation also arises from the minimal ingredients necessary to observe interesting bifur-
cations in a simplified equation for a complex amplitude in fluid dynamics [8,9]. The solitary wave solutions
of KS equation (1) was given in [10] by the extended tanh expansion and its Painlevé integrability and
Bäcklund transformation have been studied in [11]. In this paper, we will prove the KS equation (1) is CRE
solvable and obtain different nonlinear interaction wave solutions including the soliton and cnoidal wave
solutions. Then we prove the non-CRE solvable for the general KS equation with the CRE definition in
Section 4. Last section presents summary and discussion.

2. Consistent Riccati expansion for KS equation (1)

For a given nonlinear partial differential equation,

P (x, t,u) = 0, x = x(x1, x2, . . . , xn), u = u(u1, u2, . . . , un), (2)

we aim to look for the following possible truncated expansion solution

u =
n
i=0
uiR(ω)i, (3)

and R(ω) is a solution of the Riccati equation

Rω = a0 + a1R+ a2R2, (4)

where ω is an undetermined function of x and t, n is determined from the leading order analysis of (2) and
all the expansion coefficient functions ui should be determined by vanishing all the coefficients of the power
of R(ω) after substituting (3) with (4) into (2).

Definition 2.1. If the system for ui, (i = 1, 2, . . . , n) and ω obtained by vanishing all the coefficients of the
powers of R(ω) after substituting (3) with (4) into (2) is consistent, or not over-determined, we call the
expansion (3) is a consistent Riccati expansion (CRE) and the nonlinear system (2) is CRE solvable [3].

We will apply the CRE method to the KS equation and find more interaction wave solutions of KS equation.
The leading order analysis leads to n = 1, so the possible expansion expression of (3) has the following form

u = u0 + u1R(ω). (5)

Substituting (5) with (4) into (1), we obtain

(2αu1ω2
xa

2
2 + u21ωxa2)R3 + (u0u1ωxa2 + αu1ωxxa2 + u21a1ωx + u1a2ωt + u1u1x

+ 3αu1a1a2ω2
x + 2αa2u1xωx)R2 + (αu1ωxxa1 + αu1ω2

xa
2
1 + u1ωta1 + u1u0x + u21a0ωx

+ 2αu1xωxa1 + 2αu1a2a0ω2
x + u0u1ωxa1 + u1t + u0u1x + αu1xx)R+ αu1ωxxa0

+u1ωta0 + u0t + u0u1ωxa0 + αu1ω2
xa1a0 + u0u0x + 2αu1xωxa0 + αu0xx = 0. (6)

Setting the coefficients of different powers of R to zero in (6), we have four over-determined equations for only
three undetermined functions u0, u1, ω. It is fortunate that the over-determined system may be consistent.
From the coefficients of R3, R2, we can simply find

u1 = −2αa2ωx, (7)

u0 = −αωxx + αa1ω2
x + ωt

ωx
. (8)
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The coefficient of R becomes identically zero by using (7) and (8). Then from the coefficient of R0, we find
the ω equation

4αωxxωxtωx − ωttω2
x + α2δω4

xωxx + 2ωxωtωxt − 2αω2
xωxxt − α2ωxxxxω

2
x − 3α2ω3

xx − ω2
tωxx

+ 4α2ωxxωxxxωx − 4αω2
xxωt + 2αωxωtωxxx = 0. (9)

Eq. (9) can be rewritten as follows:

α2Sx + Ct + 2αCxx − CCx + α2δωxωxx = 0, (10)

where

C = ωt
ωx
, S = 2ωxωxxx − 3ω2

xx

2ω2
x

, δ = a21 − 4a0a2.

It is evident that the condition in Definition 2.1 is satisfied, so the KS equation is CRE solvable. In summary,
we have the following theorem:

Theorem 2.1. If ω is a solution of

α2Sx + Ct + 2αCxx − CCx + α2δωxωxx = 0, (11)

with

C = ωt
ωx
, S = 2ωxωxxx − 3ω2

xx

2ω2
x

, δ = a21 − 4a0a2,

then

u = −αωxx + αa1ω2
x + ωt

ωx
− 2αa2ωxRω, (12)

is the solution of the KS equation with Rω being the solution of the Riccati equation (4).

3. Soliton–cnoidal wave interaction solution of the KS equation (1)

The next thing is to find the interaction wave solution of Eq. (9) with respect to ω. From Ref.[3], we
know the ω solutions charactering the interactions between a soliton and a cnoidal wave for the KS equation
possess a form

ω = k1x+ ω1t+W (k2x+ ω2t), (13)

where

W (k2x+ ω2t) =W (ε) ≡W,

satisfies

W 2
1ε = C0 + C1W1 + C2W

2
1 + C3W

3
1 + C4W

4
1 ,W1 =Wε, (14)

with

C0 = −−α
2k22k

4
1δ + α2k42k

2
1C2 − 2α2k52k1C1 + k22ω2

1 + ω2
2k

2
1 − 2ω2k2ω1k1

3α2k62
, (15)

C3 = −k
3
2C1 − 2k22k1C2 − a1k31 − 3a1k31 + 16a2a0k31

k2k21
, (16)

C4 = δ, (17)

while all the other constants α, k1, k2, ω1, ω2, C1, C2 and δ are free under the condition of k1ω2 = k2ω1,
and a21 = a1.
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Obviously, Eq. (14) is an equation for the definition of the elliptic functions which can be expressed by
many elliptic functions such as the Jacobi elliptic functions cn(ξ), sn(ξ), and dn(ξ). So we can write down
the soliton–cnoidal wave interaction solution with

ω = k1x+ ω1t+AEπ(sn(k2x+ ω2t,m), ν, κ), (18)

where sn(z,m) is the usual Jacobi elliptic sine function and Eπ(ς, n,m) is the third type of incomplete
elliptic integral.

Substituting (18) into Eq. (13) by fixing κ = 1 and setting the coefficients of cn(ξ), sn(ξ) and dn(ξ) equal
to zero, we can find the constants solution

A = 1√
1− 4a0a2

, k1 = k2√
1− 4a0a2

, w2 = k2w1
k1
, m = 1, µ = 0, (19)

where k2, w1 are two arbitrary non-zero constants. From Eq. (18), we can get

ω = 1√
1− 4a0a2

k2x+ ω1t+
1√

1− 4a0a2
arctanh[tanh(k2x+

√
1− 4a0a2w1t)]. (20)

Substituting Eq. (20) into Eq. (12) with

R = tanh
√
δ(k1x+ ω1t)

2 +
√
δEf (sn(λk1x+ λω1t,m), 1)

2


, (21)

then we obtain the soliton–cnoidal wave interaction solution for u of Eq. (12)

u = −
(w1λ

2 + 2αk22) tanh[λ2 (w1t+ arctanh(tanh(k2x+ λw1t)))] + 4αa2k22
k2λ

, (22)

where

λ =
√

1− 4a0a2. (23)

4. Non-CRE solvable for the general KS equation

In this section, non-CRE solvability for the general KS equation is proved directly because of its non-
integrability. The general KS equation is given in the form

ut + uux + αuxx + βuxxxx = 0, (24)

where α, β are nonzero constants. The general KS equation (24) is a canonical nonlinear evolution equation
arising in long waves on thin films, long waves on the interface between two viscous fluids, unstable drift
waves in plasmas, reaction diffusion systems and flame front instability [12–15].

The Riccati expansion of Eq. (3) for the general KS equation (24) gives

u = u0 + u1R+ u2R2 + u3R3, (25)

from the leading order analysis. Substituting Eq. (25) with Eq. (3) into (24) yields

(3u23a2ωx + 360βa42u3ω4
x)R7 +

6
j=0
KjR

j = 0, (26)
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where Kj(j = 0, . . . , 6) are complicated ω-dependent but R-independent functions. Setting the coefficients
of R7, R6, R5, R4 to zero in Eq. (26), we can easily find that

u3 = −120βa32ω3
x,

u2 = −180βa22ωx(ωxx + a1ω2
x),

u1 = −60βa2(ωxxx + a21ω3
x)− 180βa1a2ωxωxx − 120βa0a22ω3

x −
60
19a2αωx,

u0 = 1
19ω3

x

[570βωxωxxωxxx − 1140βa0a1a2ω6
x − 285βa21ω4

xωxx − 2280βa0a2ω4
xωxx

− 570βa1ω3
xωxxx − 30αa1ω4

x − 30αω2
xωxx − 285βω3

xx − 19ω2
xωt − 285βω2

xωxxxx ].

(27)

Then substituting Eqs. (27) into the coefficients of R3, R2, R,R0, we find the coefficients of R3, R2, R,R0

are not zero automatically but the functions S,C, ω should satisfy the condition

2166β2ω4
xSxx + 722βCxω4

x − 380αβω4
xS − 1444β2ω4

xS
2 + 190αβδω6

x

− 361β2δ2ω8
x + 3610β2ω5

xωxxx = 0.

So we prove the general KS equation (24) is not CRE solvable and the soliton–cnoidal interaction wave
solutions could not be constructed by the same way in last section.

5. Summary and discussion

In summary, a new interaction wave solution for a special KS equation (1) is obtained by the means of
the CRE method and the general KS equation (24) is proved to be non-CRE solvable. The CRE method
can help us to find interaction solutions between solitons and any other nonlinear waves for many integrable
systems. It is also shown that the CRE method can be applied to other kinds of integrable systems, especially
for supersymmetric models and discrete ones to find different kinds of nonlinear interaction solutions. More
interaction wave solutions among different kinds of nonlinear excitations are worthy of study further.
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